Saturday, November 29, 2025

System to Cease Fraud Rings


Banks are shedding greater than USD 442 billion yearly to fraud in response to the LexisNexis True Value of Fraud Research. Conventional rule-based methods are failing to maintain up, and Gartner studies that they miss greater than 50% of recent fraud patterns as attackers adapt quicker than the foundations can replace. On the identical time, false positives proceed to rise. Aite-Novarica discovered that nearly 90% of declined transactions are literally respectable, which frustrates prospects and will increase operational prices. Fraud can also be turning into extra coordinated. Feedzai recorded a 109% improve in fraud ring exercise inside a single 12 months.

To remain forward, banks want fashions that perceive relationships throughout customers, retailers, units, and transactions. That is why we’re constructing a next-generation fraud detection system powered by Graph Neural Networks and Neo4j. As a substitute of treating transactions as remoted occasions, this method analyzes the total community and uncovers complicated fraud patterns that conventional ML usually misses.

Why Conventional Fraud Detection Fails?

First, let’s attempt to perceive why do we’d like emigrate in direction of this new method. Most fraud detection methods use conventional ML fashions that isolate the transactions to analyze. 

The Rule-Primarily based Lure 

Beneath is a really normal rule-based fraud detection system: 

def detect_fraud(transaction): 
    if transaction.quantity > 1000: 
        return "FRAUD" 
    if transaction.hour in [0, 1, 2, 3]: 
        return "FRAUD" 
    if transaction.location != person.home_location: 
        return "FRAUD" 
    return "LEGITIMATE" 

The issues listed below are fairly easy: 

  • Typically, respectable high-value purchases are flagged (for instance, your buyer buys a pc from Greatest Purchase)  
  • Fraudulent actors shortly adapt – they only preserve purchases lower than $1000  
  • No context – a enterprise traveler touring for work and making purchases, due to this fact is flagged  
  • There is no such thing as a new studying – the system doesn’t enhance from new fraud patterns being recognized  

Why even conventional ML fails?

Random Forest and XGBoost had been higher however are nonetheless analyzing every transaction independently. They could not notice! User_A, User_B, and User_C are all compromised accounts, they’re all managed by one fraudulent ring, all of them look like concentrating on the identical questionable service provider within the span of minutes.  

Necessary perception: Fraud is relational. Fraudsters are usually not working alone: they work as networks. They share sources. And their patterns solely change into seen when noticed throughout relationships between entities. 

Enter Graph Neural Networks

Particularly constructed for studying from networked information, Graph Neural Networks analyze all the graph construction the place the transactions kind a relationship between customers and retailers, and further nodes would characterize units, IP addresses and extra, quite than analyzing one transaction at a time. 

The Energy of Graph Illustration 

In our framework, we characterize the fraud drawback with a graph construction, with the next nodes and edges:  

Nodes:  

  • Customers (the shopper that possesses the bank card)  
  • Retailers (the enterprise accepting funds)  
  • Transactions (particular person purchases)  

Edges:  

  • Consumer → Transaction (who carried out the acquisition)  
  • Transaction → Service provider (the place the acquisition occurred)  
Fraud Detection Graph Framework

This illustration permits us to observe patterns like:  

  • Fraud rings: 15 compromised accounts all concentrating on the identical service provider inside 2 hours  
  • Compromised service provider: A good trying service provider rapidly attracts solely fraud  
  • Velocity assaults: Similar system performing purchases from 10 totally different accounts 

Constructing the System: Structure Overview 

Our system has 5 fundamental parts that kind an entire pipeline: 

Architecture overview

Expertise stack: 

  • Neo4j 5.x: It’s for graph storage and querying 
  • PyTorch 2.x: It’s used with PyTorch Geometric for GNN implementation 
  • Python 3.9+: Used for all the pipeline 
  • Pandas/NumPy: It’s for information manipulation 
Fraud detection setup complete
Neo4j connected successfully

Implementation: Step by Step 

Step 1: Modeling Information in Neo4j 

Neo4j is a local graph database that shops relationships as first-class residents. Right here’s how we mannequin our entities: 

  1. Consumer node with behavioral options 
CREATE (u:Consumer { 
    user_id: 'U0001', 
    age: 42, 
    account_age_days: 1250, 
    credit_score: 720, 
    avg_transaction_amount: 245.50 
}) 
  1. Service provider node with danger indicators 
CREATE (m:Service provider { 

    merchant_id: 'M001', 

    identify: 'Electronics Retailer', 

    class: 'Electronics', 

    risk_score: 0.23 

})
  1. Transaction node capturing the occasion 
CREATE (t:Transaction { 

    transaction_id: 'T00001', 

    quantity: 125.50, 

    timestamp: datetime('2024-06-15T14:30:00'), 

    hour: 14, 

    is_fraud: 0 

})
  1. Relationships join the entities 
CREATE (u)-[:MADE_TRANSACTION]->(t)-[:AT_MERCHANT]->(m) 
Fraud detection system enabled

Why this schema works: 

  • Customers and retailers are steady entities, with a selected characteristic set 
  • Transactions are occasions that kind edges in our graph 
  • A bipartite construction (Consumer-Transaction-Service provider) is properly fitted to message passing in GNNs 

Step 2: Information Technology with Practical Fraud Patterns 

Utilizing the embedded fraud patterns, we generate artificial however life like information: 

class FraudDataGenerator: 
    def generate_transactions(self, users_df, merchants_df): 
        transactions = [] 
         
        # Create fraud ring (coordinated attackers) 
        fraud_users = random.pattern(record(users_df['user_id']), 50) 
        fraud_merchants = random.pattern(record(merchants_df['merchant_id']), 10) 
         
        for i in vary(5000): 
            is_fraud = np.random.random() < 0.15  # 15% fraud price 
             
            if is_fraud: 
                # Fraud sample: excessive quantities, odd hours, fraud ring 
                user_id = random.alternative(fraud_users) 
                merchant_id = random.alternative(fraud_merchants) 
                quantity = np.random.uniform(500, 2000) 
                hour = np.random.alternative([0, 1, 2, 3, 22, 23]) 
            else: 
                # Regular sample: enterprise hours, typical quantities 
                user_id = random.alternative(record(users_df['user_id'])) 
                merchant_id = random.alternative(record(merchants_df['merchant_id'])) 
                quantity = np.random.lognormal(4, 1) 
                hour = np.random.randint(8, 22) 
             
            transactions.append({ 
                'transaction_id': f'T{i:05d}', 
                'user_id': user_id, 
                'merchant_id': merchant_id, 
                'quantity': spherical(quantity, 2), 
                'hour': hour, 
                'is_fraud': 1 if is_fraud else 0 
            }) 
         
        return pd.DataFrame(transactions) 

This operate helps us in producing 5,000 transactions with 15% fraud price, together with life like patterns like fraud rings and time-based anomalies. 

Step 3: Constructing the GraphSAGE Neural Community 

We’ve got chosen the GraphSAGE or Graph Pattern and Mixture Methodology for our GNN structure because it not solely scales properly however handles new nodes with out retraining as properly. Right here’s how we’ll implement it: 

import torch 
import torch.nn as nn 
import torch.nn.practical as F 
from torch_geometric.nn import SAGEConv 
 
class FraudGNN(nn.Module): 
    def __init__(self, num_features, hidden_dim=64, num_classes=2): 
        tremendous(FraudGNN, self).__init__() 
         
        # Three graph convolutional layers 
        self.conv1 = SAGEConv(num_features, hidden_dim) 
        self.conv2 = SAGEConv(hidden_dim, hidden_dim) 
        self.conv3 = SAGEConv(hidden_dim, hidden_dim) 
         
        # Classification head 
        self.fc = nn.Linear(hidden_dim, num_classes) 
         
        # Dropout for regularization 
        self.dropout = nn.Dropout(0.3) 
     
    def ahead(self, x, edge_index): 
        # Layer 1: Mixture from 1-hop neighbors 
        x = self.conv1(x, edge_index) 
        x = F.relu(x) 
        x = self.dropout(x) 
         
        # Layer 2: Mixture from 2-hop neighbors 
        x = self.conv2(x, edge_index) 
        x = F.relu(x) 
        x = self.dropout(x) 
         
        # Layer 3: Mixture from 3-hop neighbors 
        x = self.conv3(x, edge_index) 
        x = F.relu(x) 
        x = self.dropout(x) 
         
        # Classification 
        x = self.fc(x) 
        return F.log_softmax(x, dim=1) 

What’s occurring right here: 

  • Layer 1 examines fast neighbors (person → transactions → retailers)  
  • Layer 2 will lengthen to 2-hop neighbors (discovering customers related by means of a standard service provider)  
  • Layer 3 will observe 3-hop neighbors (discovering fraud rings of customers related throughout a number of retailers)  
  • Use dropout (30%) to cut back overfitting to particular buildings within the graph  
  • Log of softmax will present chance distributions for respectable vs fraudulent 

Step 4: Function Engineering 

We normalize all options to [0, 1] vary for steady coaching: 

def prepare_features(customers, retailers): 
    # Consumer options (4 dimensions) 
    user_features = [] 
    for person in customers: 
        options = [ 
            user['age'] / 100.0,                     # Age normalized 
            person['account_age_days'] / 3650.0,       # Account age (10 years max) 
            person['credit_score'] / 850.0,            # Credit score rating normalized 
            person['avg_transaction_amount'] / 1000.0  # Common quantity 
        ] 
        user_features.append(options) 
     
    # Service provider options (padded to match person dimensions) 
    merchant_features = [] 
    for service provider in retailers: 
        options = [ 
            merchant['risk_score'],  # Pre-computed danger 
            0.0, 0.0, 0.0           # Padding 
        ] 
        merchant_features.append(options) 
     
    return torch.FloatTensor(user_features + merchant_features) 

Step 5: Coaching the Mannequin 

Right here’s our coaching loop: 

def train_model(mannequin, x, edge_index, train_indices, train_labels, epochs=100): 
    optimizer = torch.optim.Adam( 
        mannequin.parameters(),  
        lr=0.01,           # Studying price 
        weight_decay=5e-4  # L2 regularization 
    ) 
     
    for epoch in vary(epochs): 
        mannequin.practice() 
        optimizer.zero_grad() 
         
        # Ahead cross 
        out = mannequin(x, edge_index) 
         
        # Calculate loss on coaching nodes solely 
        loss = F.nll_loss(out[train_indices], train_labels) 
         
        # Backward cross 
        loss.backward() 
        optimizer.step() 
         
        if epoch % 10 == 0: 
            print(f"Epoch {epoch:3d} | Loss: {loss.merchandise():.4f}") 
     
    return mannequin 

Coaching dynamics: 

  • It begins with loss round 0.80 (random initialization) 
  • It converges to 0.33-0.36 after 100 epochs 
  • It takes about 60 seconds on CPU for our dataset 

Outcomes: What We Achieved 

After operating the entire pipeline, listed below are our outcomes: 

Training complete

Efficiency Metrics 

Classification Report: 

Evaluating model performance

Understanding the Outcomes 

Let’s attempt to breakdown the outcomes to know it properly. 

What labored properly: 

  • 91% general accuracy: It Is far greater than rule-based accuracy (70%). 
  • AUC-ROC of 0.96: Shows superb class discrimination. 
  • Good recall on authorized transactions: we’re not blocking good customers. 

What wants enchancment: 

  • The frauds had a precision of zero. The mannequin is just too conservative on this run. 
  • This may occur as a result of the mannequin merely wants extra fraud examples or the edge wants some tuning. 

Visualizations Inform the Story 

The following confusion matrix reveals how the mannequin categorized all transactions as respectable on this specific run:  

confusion matrix

The ROC curve demonstrates robust discriminative capability (AUC = 0.961), which means the mannequin is studying fraud patterns even when the edge wants adjustment: 

ROC curve - fraud detection
transaction distribution

Fraud Sample Evaluation 

The evaluation we made was in a position to present unmistakable traits:  

Temporal traits:  

  • From 0 to three and 22 to 23 hours: there was a 100% fraud price (it was traditional odd-hour assaults)  
  • From 8 to 21 hours: there was a 0% fraud price (it was regular enterprise hours)  

Quantity distribution:  

  • Legit: it was specializing in the $0-$250 vary (log-normal distribution)  
  • Fraudulent: it was protecting the $500-$2000 vary (high-value assaults)  

Community traits:   

  • The fraud ring of fifty accounts had 10 retailers in frequent  
  • Fraud was not evenly dispersed however concentrated in sure service provider clusters 

When to Use This Method 

This method is Perfect for:  

  • Fraud has seen community patterns (e.g., rings, coordinated assaults)  
  • You possess relationship information (user-merchant-device connections)  
  • The transaction quantity makes it value to put money into infrastructure (tens of millions of transactions)  
  • Actual-time detection with a latency of 50-100ms is ok  

This method just isn’t a superb one for situation like:  

  • Utterly unbiased transactions with none community results  
  • Very small datasets (< 10K transactions)  
  • Require sub-10ms latency  
  • Restricted ML infrastructure 

Conclusion 

Graph Neural Networks change the sport for fraud detection. As a substitute of treating the transactions as remoted occasions, firms can now mannequin them as a community and this far more complicated fraud schemes will be detected that are missed by the normal ML. 

The progress of our work proves that this mind-set is not only fascinating in principle however it’s helpful in observe. GNN-based fraud detection with the figures of 91% accuracy, 0.961 AUC, and functionality to detect fraud rings and coordinated assaults offers actual worth to the enterprise. 

All of the code is offered on GitHub, so be at liberty to modify it in your particular fraud detection points and use instances. 

Continuously Requested Questions

Q1. Why use Graph Neural Networks (GNN) for fraud detection?

A. GNNs seize relationships between customers, retailers, and units—uncovering fraud rings and networked behaviors that conventional ML or rule-based methods miss by analyzing transactions independently.

Q2. How does Neo4j enhance this fraud detection system?

A. Neo4j shops and queries graph relationships natively, making it straightforward to mannequin and traverse person–service provider–transaction connections important for real-time fraud sample detection.

Q3. What outcomes did the GNN-based mannequin obtain?

A. The mannequin reached 91% accuracy and an AUC of 0.961, efficiently figuring out coordinated fraud rings whereas holding false positives low.

Information Science Trainee at Analytics Vidhya
I’m at present working as a Information Science Trainee at Analytics Vidhya, the place I deal with constructing data-driven options and making use of AI/ML methods to resolve real-world enterprise issues. My work permits me to discover superior analytics, machine studying, and AI functions that empower organizations to make smarter, evidence-based choices.
With a powerful basis in pc science, software program growth, and information analytics, I’m captivated with leveraging AI to create impactful, scalable options that bridge the hole between expertise and enterprise.
📩 It’s also possible to attain out to me at [email protected]

Login to proceed studying and luxuriate in expert-curated content material.

Related Articles

Latest Articles