Saturday, October 18, 2025

Introducing Keras 3 for R

We’re thrilled to introduce keras3, the following model of the Keras R
bundle. keras3 is a ground-up rebuild of {keras}, sustaining the
beloved options of the unique whereas refining and simplifying the API
based mostly on helpful insights gathered over the previous few years.

Keras gives an entire toolkit for constructing deep studying fashions in
R—it’s by no means been simpler to construct, practice, consider, and deploy deep
studying fashions.

Set up

To put in Keras 3:

https://keras.posit.co. There, you can find guides, tutorials,
reference pages with rendered examples, and a brand new examples gallery. All
the reference pages and guides are additionally out there by way of R’s built-in assist
system.

In a fast-paced ecosystem like deep studying, creating nice
documentation and wrappers as soon as will not be sufficient. There additionally must be
workflows that make sure the documentation is up-to-date with upstream
dependencies. To perform this, {keras3} consists of two new maintainer
options that make sure the R documentation and performance wrappers will keep
up-to-date:

  • We now take snapshots of the upstream documentation and API floor.
    With every launch, all R documentation is rebased on upstream
    updates. This workflow ensures that each one R documentation (guides,
    examples, vignettes, and reference pages) and R perform signatures
    keep up-to-date with upstream. This snapshot-and-rebase
    performance is carried out in a brand new standalone R bundle,
    {doctether}, which can
    be helpful for R bundle maintainers needing to maintain documentation in
    parity with dependencies.

  • All examples and vignettes can now be evaluated and rendered throughout
    a bundle construct. This ensures that no stale or damaged instance code
    makes it right into a launch. It additionally means all person dealing with instance code
    now moreover serves as an prolonged suite of snapshot unit and
    integration exams.

    Evaluating code in vignettes and examples continues to be not permitted
    in response to CRAN restrictions. We work across the CRAN restriction
    by including extra bundle construct steps that pre-render
    examples
    and
    vignettes.

Mixed, these two options will make it considerably simpler for Keras
in R to keep up characteristic parity and up-to-date documentation with the
Python API to Keras.

Multi-backend assist

Quickly after its launch in 2015, Keras featured assist for hottest
deep studying frameworks: TensorFlow, Theano, MXNet, and CNTK. Over
time, the panorama shifted; Theano, MXNet, and CNTK have been retired, and
TensorFlow surged in reputation. In 2021, three years in the past, TensorFlow
grew to become the premier and solely supported Keras backend. Now, the panorama
has shifted once more.

Keras 3 brings the return of multi-backend assist. Select a backend by
calling:

200
features
,
gives a complete suite of operations sometimes wanted when
working on nd-arrays for deep studying. The Operation household
supersedes and significantly expands on the previous household of backend features
prefixed with k_ within the {keras} bundle.

The Ops features allow you to write backend-agnostic code. They supply a
uniform API, no matter should you’re working with TensorFlow Tensors,
Jax Arrays, Torch Tensors, Keras Symbolic Tensors, NumPy arrays, or R
arrays.

The Ops features:

  • all begin with prefix op_ (e.g., op_stack())
  • all are pure features (they produce no side-effects)
  • all use constant 1-based indexing, and coerce doubles to integers
    as wanted
  • all are protected to make use of with any backend (tensorflow, jax, torch, numpy)
  • all are protected to make use of in each keen and graph/jit/tracing modes

The Ops API consists of:

  • The whole thing of the NumPy API (numpy.*)
  • The TensorFlow NN API (tf.nn.*)
  • Widespread linear algebra features (A subset of scipy.linalg.*)
  • A subfamily of picture transformers
  • A complete set of loss features
  • And extra!

Ingest tabular knowledge with layer_feature_space()

keras3 gives a brand new set of features for constructing fashions that ingest
tabular knowledge: layer_feature_space() and a household of characteristic
transformer features (prefix, feature_) for constructing keras fashions
that may work with tabular knowledge, both as inputs to a keras mannequin, or
as preprocessing steps in a knowledge loading pipeline (e.g., a
tfdatasets::dataset_map()).

See the reference
web page
and an
instance utilization in a full end-to-end
instance

to be taught extra.

New Subclassing API

The subclassing API has been refined and prolonged to extra Keras
varieties
.
Outline subclasses just by calling: Layer(), Loss(), Metric(),
Callback(), Constraint(), Mannequin(), and LearningRateSchedule().
Defining {R6} proxy courses is not vital.

Moreover the documentation web page for every of the subclassing
features now accommodates a complete itemizing of all of the out there
attributes and strategies for that kind. Try
?Layer to see what’s
doable.

Saving and Export

Keras 3 brings a brand new mannequin serialization and export API. It’s now a lot
easier to save lots of and restore fashions, and in addition, to export them for
serving.

  • save_model()/load_model():
    A brand new high-level file format (extension: .keras) for saving and
    restoring a full mannequin.

    The file format is backend-agnostic. This implies which you can convert
    skilled fashions between backends, just by saving with one backend,
    after which loading with one other. For instance, practice a mannequin utilizing Jax,
    after which convert to Tensorflow for export.

  • export_savedmodel():
    Export simply the ahead go of a mannequin as a compiled artifact for
    inference with TF
    Serving
    or (quickly)
    Posit Join. This
    is the best approach to deploy a Keras mannequin for environment friendly and
    concurrent inference serving, all with none R or Python runtime
    dependency.

  • Decrease stage entry factors:

    • save_model_weights() / load_model_weights():
      save simply the weights as .h5 recordsdata.
    • save_model_config() / load_model_config():
      save simply the mannequin structure as a json file.
  • register_keras_serializable():
    Register customized objects to allow them to be serialized and
    deserialized.

  • serialize_keras_object() / deserialize_keras_object():
    Convert any Keras object to an R record of straightforward varieties that’s protected
    to transform to JSON or rds.

  • See the brand new Serialization and Saving
    vignette

    for extra particulars and examples.

New random household

A brand new household of random tensor
mills
.
Just like the Ops household, these work with all backends. Moreover, all of the
RNG-using strategies have assist for stateless utilization whenever you go in a
seed generator. This permits tracing and compilation by frameworks that
have particular assist for stateless, pure, features, like Jax. See
?random_seed_generator()
for instance utilization.

Different additions:

  • New form()
    perform, one-stop utility for working with tensor shapes in all
    contexts.

  • New and improved print(mannequin) and plot(mannequin) methodology. See some
    examples of output within the Useful API
    information

  • All new match() progress bar and stay metrics viewer output,
    together with new dark-mode assist within the RStudio IDE.

  • New config
    household
    ,
    a curated set of features for getting and setting Keras world
    configurations.

  • All the different perform households have expanded with new members:

Migrating from {keras} to {keras3}

{keras3} supersedes the {keras} bundle.

In the event you’re writing new code in the present day, you can begin utilizing {keras3} proper
away.

In case you have legacy code that makes use of {keras}, you’re inspired to
replace the code for {keras3}. For a lot of high-level API features, such
as layer_dense(), match(), and keras_model(), minimal to no modifications
are required. Nevertheless there’s a lengthy tail of small modifications that you simply
would possibly have to make when updating code that made use of the lower-level
Keras API. A few of these are documented right here:
https://keras.io/guides/migrating_to_keras_3/.

In the event you’re operating into points or have questions on updating, don’t
hesitate to ask on https://github.com/rstudio/keras/points or
https://github.com/rstudio/keras/discussions.

The {keras} and {keras3} packages will coexist whereas the neighborhood
transitions. Throughout the transition, {keras} will proceed to obtain
patch updates for compatibility with Keras v2, which continues to be
revealed to PyPi underneath the bundle title tf-keras. After tf-keras is
not maintained, the {keras} bundle shall be archived.

Abstract

In abstract, {keras3} is a strong replace to the Keras R bundle,
incorporating new options whereas preserving the convenience of use and
performance of the unique. The brand new multi-backend assist,
complete suite of Ops features, refined mannequin serialization API,
and up to date documentation workflows allow customers to simply take
benefit of the newest developments within the deep studying neighborhood.

Whether or not you’re a seasoned Keras person or simply beginning your deep
studying journey, Keras 3 gives the instruments and suppleness to construct,
practice, and deploy fashions with ease and confidence. As we transition from
Keras 2 to Keras 3, we’re dedicated to supporting the neighborhood and
making certain a easy migration. We invite you to discover the brand new options,
take a look at the up to date documentation, and be part of the dialog on our
GitHub discussions web page. Welcome to the following chapter of deep studying in
R with Keras 3!

Related Articles

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Latest Articles